martes, 10 de octubre de 2017

Teoría de Restricciones

lunes, 27 de febrero de 2017

AFILIACIÓN DE TRABAJADORES INDEPENDIENTES

AFILIACIÓN DE TRABAJADORES INDEPENDIENTES AL SISTEMA GENERAL DE RIESGOS LABORALES

MUCHO OJO CON LAS COOPERATIVAS FANTASMAS


Si usted es un trabajador DEPENDIENTE:

Usted firmó un contrato de trabajo y por lo tanto es obligación de su empleador afiliarlo directamente a la ARL. 


Si usted es un trabajador INDEPENDIENTE:

De acuerdo con el Decreto 1072 de 2015, artículos 2.2.4.2.2.1 a 2.2.4.2.2.23 el trabajador independiente (vinculado mediante un Contrato de Prestación de Servicios u Orden de Prestación de Servicios) puede afiliarse al Sistema General de Riesgos Laborales por intermedio de la empresa contratante. El Decreto 3615 de 2005, art. 2°, que le permite afiliarse a través de Agrupadoras LEGALMENTE AUTORIZADAS, entiéndase bien este apartado, por el Ministerio de Salud.

Estos errores son comunes entre los trabajadores y empleadores que los afilian a la ARL a través de Cooperativas u Organizaciones no autorizadas por el Ministerio de Salud. 

He sabido de varios casos de trabajadores a los cuales las "Agrupadoras" luego de una semana de afiliación, generan una Novedad de Retiro a la ARL y lo desafilian, quedando el trabajador sin cobertura y expuesto durante el resto del contrato, en el peor de los casos. Sin embargo, la Agrupadora le continúa cobrando por el servicio de afiliación, generando en muchos casos falsas certificaciones de afiliación.

Es importante para todas las partes interesadas que cumplan lo estipulado en el Decreto 1072 de 2015 en el articulo 2.2.4.6.28 numeral 3, en el cual se establece lo siguiente:

"Verificar antes del inicio del trabajo y periódicamente, el cumplimiento de la obligación de afiliación al Sistema General de riesgos laborales, considerando la rotación del personal por parte de los proveedores contratistas y subcontratistas . . ."

Estas verificaciones debe efectuarlas el Responsable del SG-SST.

En toda empresa que tenga contratistas a cargo, antes del inicio del trabajo del contratista, el SISO de la empresa contratante debe verificar que el contratista tiene su afiliación correcta y que ésta es legal. Ese es el verdadero papel de un SISO en el campo laboral operativo. Con estas verificaciones estamos siendo responsables con la vida del trabajador y el bienestar de su familia y además estamos cuidando los intereses de la empresa.

Recordemos que todo el equipo de Seguridad y Salud de una empresa es responsable de la vida de los trabajadores independientemente del tipo de contrato.

El mensaje es que les cerremos las puertas a esas cooperativas ilegales de poste que no son responsables con las afiliaciones de los trabajadores independientes.

martes, 7 de febrero de 2017

Nuevo plazo de implementación del Sistema de Gestión de Seguridad y Salud en el Trabajo (SG-SST)


Todos los empleadores públicos y privados, los contratantes de personal bajo cualquier modalidad de contrato civil, comercial o administrativo, organizaciones de economía solidaria y del sector cooperativo, así como las empresas de servicios temporales; deberán sustituir el Programa de Salud Ocupacional a partir del 1° de Junio de 2017.


El Decreto 052 de 2017 fue publicado por parte del Ministerio del Trabajo, por medio del cual modifica el art. 2.2.4..6.37 del Decreto 1072 de 2015 sobre la transición para la implementación del Sistema de Gestión de la Seguridad y Salud en el Trabajo (SG-SST).


Recordemos que anteriormente la fecha límite para cumplir con el SG-SST era el 31 de Enero del presente año, sin embargo las empresas que aún no han cumplido con este requisito, deben hacerlo a partir del 1° de junio de 2017 en 5 fases:

  1. Evaluación inicial
  2. Plan de mejoramiento conforme a la evaluación inicial
  3. Ejecución del SGSST
  4. Seguimiento y mejora
  5. Inspección, vigilancia y control
Para mayor información ver Decreto 052 de 2017 aquí

miércoles, 11 de enero de 2017

HSE: RIESGO BIOLÓGICO

¿Sabes cómo gestionar el riesgo biológico en tu organización?
El Programa de Vigilancia Epidemiológica para Riesgo Biológico les da a las compañías una perspectiva amplia de estos peligros para una gestión efectiva.
Los trabajadores del sector salud tienen como misión cuidar la integridad de los pacientes, así como la propia. Por las labores que desempeñan, están en contacto permanente con sangre, fluidos corporales, tejidos, microorganismos y secreciones biológicas que los pueden poner en riesgo. Los peligros derivados del contacto con estas sustancias se conocen como riesgo biológico y su control es uno de los grandes retos de las empresas del sector.
De acuerdo con las Normas de Seguridad y Salud en el trabajo de OSHAS, cada año, entre 600.000 y 800.000 trabajadores de todo el mundo entran en contacto con la sangre en el desarrollo de sus labores, exponiéndose a contagios y afectaciones en su salud.
Para controlar estas situaciones de peligro las empresas cuentan con el Programa de Vigilancia Epidemiológica para Riesgo Biológico, un aliado que facilita la gestión de riesgos en un ciclo de mejoramiento continuo.
El programa permite la recolección sistemática, el análisis y la interpretación de datos necesarios para la planificación, implementación y evaluación de políticas de salud pública. Es decir, hace un análisis riguroso de los eventos de salud y las enfermedades para recopilar la información necesaria y difundirla entre los colaboradores.
Con su implementación se busca minimizar los efectos negativos de los agentes de riesgo biológico en las personas expuestas, es decir, en quienes tienen una posibilidad real de entrar en contacto con estas sustancias.
Además, le permitirá a la empresa optimizar los esfuerzos logísticos y económicos destinados a la prevención de accidentes, así como disminuir las tasas de mortalidad, enfermedades, ausentismo e incapacidades.
La primera acción para implementarlo es conocer a la población, sus condiciones de salud y su ambiente laboral para identificar los riesgos a los que están expuestos y definir la distribución y la magnitud de los peligros.
Para hacerlo, es necesario llevar a cabo mecanismos de recolección de información, registros de accidentes, seguimiento a los índices de mortalidad e incapacidades, registro de exposiciones a riesgo biológico y delimitación de las áreas de trabajo implicadas.
Cuando se tenga un diagnóstico completo del riesgo, las empresas deben intervenir sobre los factores que ponen en peligro la salud de sus colaboradores. Por eso, en esta segunda acción es muy importante asesorar a las áreas expuestas a estas condiciones, de acuerdo con las particularidades de cada servicio. Por ejemplo, la identificación, evaluación, prevención y control de daños no serán los mismos en cirugía que en Urgencias o en la Unidad de Cuidados Intensivos.
Poner en marcha jornadas de inmunización para que los empleados tengan sus vacunas al día es una medida de gran importancia para protegerlos en caso de entrar en contacto con estos residuos.
Un factor estratégico en esta fase del proceso es la construcción y el fomento de una cultura del cuidado al interior de la empresa, en la que cada uno de los empleados se empodere de su propia seguridad, conozca muy bien los riesgos para su salud y actúe de una manera adecuada, para protegerse a sí mismo y a los demás. A esto deben sumarse las condiciones seguras que la empresa les debe generar para trabajar.
Recuerda que el buen control de los datos, los procesos y los comportamientos te permitirán estar un paso adelante en la prevención de accidentes y enfermedades laborales. Aplica el Programa de Vigilancia Epidemiológica para Riesgo Biológico en tu empresa y construye un ambiente más saludable para tus pacientes y tus empleados.

Fuente:

Lida Piedrahíta Arbeláez
Asesora en Prevención
Silvia Eugenia Quintero
Médica Ocupacional

viernes, 3 de junio de 2011

TEORÍA DE DECISIONES

TEORÍA DE DECISIONES





DEFINICIÓN

Una decisión es una elección consciente y racional, orientada a conseguir un objetivo, que se realiza entre diversas posibilidades de actuación (o alternativas). Antes de tomar una decisión deberemos calcular cual será el resultado de escoger una alternativa. En función de las consecuencias previsibles para cada alternativa se tomará la decisión. Así, los elementos que constituyen la estructura de la decisión son: los objetivos de quién decide y las restricciones para conseguirlos; las alternativas posibles y potenciales; las consecuencias de cada alternativa; el escenario en el que se toma la decisión y las preferencias de quien decide.


MÉTODOS Y MODELOS PARA LA TOMA DE DECISIONES

Existen diversas situaciones en las que deben tomarse decisiones empresariales: situaciones de certeza, incertidumbre y riesgo.


Decisiones en situación de certeza

Una situación de certeza es aquella en la que un sujeto tiene información completa sobre una situación determinada, sobre cómo evolucionará y conoce el resultado de su decisión. Ej: decisiones sobre compras cuando se conoce la demanda, de distribución de personal cuando se conoce el coste por persona y operación, etc. La toma de decisiones en un marco de certeza no implica dificultad alguna, más allá de las relacionadas con la gestión empresarial.


Decisiones en situación de riesgo

Son situaciones en la que los datos se describen mediante distribuciones de probabilidad. Se enfrentan a situaciones en donde se corre un riesgo al tomar una decisión. En este tipo de situaciones conocemos la probabilidad de que ocurra cada situación. Se trata de analizar beneficios y pérdidas ponderados por las probabilidades de que sucedan.


Decisiones en situación de incertidumbre

Una situación de incertidumbre es aquella en la que un sujeto toma la decisión sin conocer del todo la situación y existen varios resultados para cada estrategia. Pueden ser decisiones no competitivas y competitivas.


Decisiones no competitivas

En las decisiones no competitivas nadie se opone a la estrategia del sujeto que decide.
Ej: vendedores de periódicos (se quiere conocer la cantidad a adquirir de acuerdo con las ventas). Para decidir existen una serie de criterios de elección:

- Maximin, pesimista o Wald
- Máximax, optimista o Hurwicz
- Coeficiente de optimismo-pesimismo
- Razón suficiente o Laplace
- Mínimax, coste de oportunidad o Savage

a) El criterio maximin supone maximizar el resultado mínimo, es decir el decisor quiere asegurarse la elección mejor en caso que se dé la situación más desfavorable. Es pesimista. Es útil en situaciones muy inciertas, si quieren evitarse riesgos o si existe conflicto.

b) El criterio maximax consiste en maximizar el máximo; escoger el resultado máximo entre los mejores de cada alternativa. El decisor es optimista.

c) El criterio del coeficiente de optimismo-pesimismo se sitúa entre los dos anteriores. Partimos de un grado de optimismo y de pesimismo relacionados del siguiente modo:

Coeficiente de optimismo= p; coeficiente de pesimismo= (1-p)= q; donde p+q= 1 y 0<p<1.
Dentro de la misma alternativa o estrategia consideraremos el resultado mayor de cada alternativa como p mientras que el resultado menor será q. Se escoge el mayor tras ponderar los resultados esperados por los coeficientes de optimismo y pesimismo.

d) El criterio del principio de razón suficiente espera que todas las situaciones de futuro tendrán la misma probabilidad de suceder. Ante esta situación se elige el resultado medio más elevado.

e) El criterio minimax plantea elegir en función de lo que se dejará de ganar. Por tanto, en primer lugar debe calcularse el máximo coste de oportunidad de cualquier opción y, en segundo lugar, elegir el menor de ellos.


EJEMPLO:

Supongamos que una empresa quiere realizar una campaña publicitaria. Se le presentan 3 posibilidades: radio (15 minutos de lunes a jueves en un espacio), TV (1 spot cada semana sobre las 12h) y prensa (1 anuncio 2 días a la semana los lunes y los jueves). Como han hecho campañas anteriormente se han podido valorar los resultados de las diferentes posibilidades del siguiente modo:


                                DEMANDA ALTA   DEMANDA MEDIA    DEMANDA BAJA 
RADIO                                  100                         40                               20 
T.V.                                       80                          20                                 5 
PRENSA                                90                          35                               25 

Ej: si la demanda de mercado se mantiene alta, la campaña publicitaria en la radio garantiza los mejores resultados. Si la demanda de mercado se mantiene baja, la campaña publicitaria que garantiza los mejores resultados es la prensa. ¿Qué medio de comunicación elegiríais?


a) El pesimista adoptará el MAXIMIN, es decir, escoger el mejor resultado de entre la peor situación. El peor escenario (o peor situación) es que la demanda sea baja. El mejor resultado en el peor escenario es: PRENSA.


b) El optimista adoptará el criterio MAXIMAX, el mejor de los mejores. El mejor escenario es la demanda alta. El mejor de los mejores es: RADIO.


c) Puede escogerse una situación intermedia entre optimismo y pesimismo (CRITERIO OPTIMISMO-PESIMISMO). Debe suponerse un determinado grado de optimismo (p). Si suponemos:

p= 60% = 0,6 ; q=0,4: 

Radio : p * max + q * min = 100 * 0,6 + 20 * 0,4 = 68
T.V. : p * max + q * min = 80 * 0,6 + 5 * 0,4 = 50
Prensa: p * max + q * min = 90 * 0,6 + 25 * 0,4 = 64

Escogerá la RADIO, al ser el resultado mayor de entre las distintas alternativas.


d) Si creemos que todas las situaciones tienen la misma posibilidad de suceder se escogerá el resultado medio más elevado (LAPLACE).

Resultado medio radio = (100+40+20)/3 = 53,3
Resultado medio TV = (80+20+5)/3 = 35
Resultado medio prensa = (90+35+25)/3= 50.
Escogerá RADIO


e) Con el MINIMAX se escoge el mínimo de los máximos costes de oportunidad posibles.

Calculamos la matriz de costes de oportunidad:

DEM. ALTA     DEM. MEDIA  DEM. BAJA   Máx. Coste de 
                                                                                                            Oportunidad 
Radio                                     0                       0                     5                    5 
T.V.                                     20                     20                   20                  20 
Prensa                                  10                       5                     0                  10 

Elegirá el mínimo de los máximos costes de oportunidad: RADIO. 

En resumen: 
                            
                       Maximin       Maximax       Laplace       Optim-pesim       Minimax 
Radio                                       X                 X                   X                    X 
T.V.      
Prensa                X     


Se escogerá realizar la campaña publicitaria por la RADIO. 

Aquí les dejo otro ejemplo de teoría de decisiones: EJEMPLO_2




TEORÍA DE JUEGOS

TEORÍA DE JUEGOS





La Teoría de Juegos se desarrollo con el simple hecho de que un individuo se relacione con otro u otros. Hoy en día se enfrenta cotidianamente a esta teoría, en cualquier momento. Para el hombre la importancia que representa la Teoría de Juegos es evidente, pues a diario se enfrenta a múltiples situaciones que son juegos.

Actualmente la Teoría de Juegos se ocupa sobre todo de que ocurre cuando los hombres se relacionan de forma racional, es decir, cuando los individuos se interrelacionan utilizando el raciocinio. Sin embargo, la Teoría de Juegos tiene todas las respuestas a los todos problemas del mundo.

¿QUÉ ES LA TEORÍA DE JUEGOS?

La Teoría de Juegos consiste en razonamientos circulares, los cuales no pueden ser evitados al considerar cuestiones estratégicas. Por naturaleza, a los humanos no se les va muy bien al pensar sobre los problemas de las relaciones estratégicas, pues generalmente la solución es la lógica a la inversa.

En la Teoría de Juegos la intuición no es muy fiable en situaciones estratégicas, razón por la que se debe entrenar tomando en consideración ejemplos instructivos, sin necesidad que los mismos sean reales.

El principal objetivo de la teoría de los juegos es determinar los papeles de conducta racional en situaciones de "juego" en las que los resultados son condicionales a las acciones de jugadores interdependientes.

Un juego es cualquier situación en la cual compiten dos o más jugadores. El Ajedrez y el Póker son buenos ejemplos, pero también lo son el duopolio y el oligopolio en los negocios. La extensión con que un jugador alcanza sus objetivos en un juego depende del azar, de sus recursos físicos y mentales y de los de sus rivales, de las reglas del juego y de los cursos de acciones que siguen los jugadores individuales, es decir, sus estrategias.

Una estrategia es una especificación de la acción que ha de emprender un jugador en cada contingencia posible del juego.

Se supone que, en un juego, todos los jugadores son racionales, inteligentes y están bien informados. En particular, se supone que cada jugador conoce todo el conjunto de estrategias existentes, no solo para él, sino también para sus rivales, y que cada jugador conoce los resultados de todas las combinaciones posibles de las estrategias.

La teoría de juegos está básicamente ligada a las matemáticas, ya que es principalmente una categoría de matemáticas aplicadas, aunque los analistas de juegos utilizan asiduamente otras áreas de esta ciencia, en particular las probabilidades, la estadística y la programación lineal en conjunto con la teoría de juegos. Pero la mayoría de la investigación fundamental es desempeñada por especialistas en otras materias.

Esta teoría tiene aplicaciones en numerosas áreas, como las ciencias políticas o la estrategia militar, que fomentó algunos de los primeros desarrollos de esta teoría. La biología evolutiva, donde se ha utilizado ampliamente para comprender y predecir ciertos resultados de la evolución, como el concepto de estrategia evolutiva estable introducido por John Maynard Smith; o la psicología, donde puede utilizarse para analizar juegos de simple diversión o aspectos más importantes de la vida y la sociedad también son claros ejemplos de aplicaciones.

Pero sin duda, su principal aplicación la encontramos en las ciencias económicas porque intenta encontrar estrategias racionales en situaciones donde el resultado depende no solamente de la estrategia de un participante y de las condiciones del mercado, sino también de las estrategias elegidas por otros jugadores, con objetivos distintos o coincidentes.

En esta ciencia se ha evolucionado notablemente, ya que a partir de los instrumentos proporcionados por Von Neumann y Morgenstern se comenzó a progresar en el conocimiento de la competencia imperfecta, porque hasta entonces solo tenían explicación “juegos” particularmente simples, como el monopolio o la competencia perfecta, ya que el monopolio puede ser tratado como un juego con un único jugador, y la competencia perfecta puede ser entendida teniendo en cuenta un número infinito de jugadores, de manera que cada agente individual no puede tener un efecto sobre agregados de mercado si actúa individualmente.

La teoría de juegos ha venido desempeñando, en los últimos tiempos, un papel cada vez mayor en los campos de lógica y ciencias informáticas. Varias teorías de lógica se basan en la semántica propia a los juegos, e informáticos ya han utilizado juegos para representar computaciones.



ORIGEN DE LA TEORÍA DE JUEGOS

La Teoría de Juegos fue creada por Von Neumann y Morgenstern, y descriptas en su libro clásico The Theory of Games Behavior, publicado en 1944. Otros habían anticipado algunas ideas. Los economistas Cournot y Edgeworth fueron particularmente innovadores en el siglo XIX. Otras contribuciones posteriores mencionadas fueron hechas por los matemáticos Borel y Zermelo. El mismo Von Neumann ya había puesto los fundamentos en el artículo publicado en 1928. Sin embargo, no fue hasta que apareció el libro de Von Neumann y Morgenstern que el mundo comprendió cuán potente era el instrumento descubierto para estudiar las relaciones humanas. Von Neumann y Morgenstern investigaron dos planteamientos distintos de la Teoría de Juegos. El primero de ellos el planteamiento estratégico o no cooperativo.

Von Neumann y Morgenstern resolvieron este problema en el caso particular de juegos con dos jugadores cuyos intereses son diametralmente opuestos. A estos juegos se les llama estrictamente competitivos, o de suma cero, porque cualquier ganancia para un jugador siempre se equilibra exactamente por una pérdida correspondiente para el otro jugador. El ajedrez, el backgammon y el póquer son juegos tratados habitualmente como juegos de suma cero.

En el segundo de ellos desarrollaron el planteamiento coalicional o cooperativo, en el que buscaron describir la conducta óptima en juegos con muchos jugadores. Puesto que éste es un problema mucho más difícil, no es de sorprender que sus resultados fueran mucho menos precisos que los alcanzados para el caso de suma cero y dos jugadores. En particular, Von Neumann abandono todo intento de especificar estrategias óptimas para jugadores individuales. En lugar de ello se propuso clasificar los modelos de formación de coaliciones que son consistentes con conductas racionales.

CONCEPTOS BÁSICOS

JUEGOS BIPERSONALES DE SUMA CERO

En un juego bipersonal de suma cero, cada uno de dos jugadores tiene que escoger entre unas acciones dictadas a cada turno, y la pérdida de cada jugador es igual al beneficio del su contrincante.

MATRIZ DE PAGO


La matriz de pagos de un juego bipersonal de suma cero tiene reglones etiquetados por las acciones del "jugador renglón" y columnas etiquetadas por las acciones del su contrincante, el "jugador columna." La entrada ij de la matriz es el pago que gana el jugador renglón en caso de que el jugador renglón usa acción i y el jugador columna usa acción j.

ESTRATEGIA MIXTA, VALOR ESPERADO

Un jugador usa una estrategia pura si usa la misma acción a cada turno del juego. El jugador usa una estrategia mixta si en cada turno escoge al azar una acción para que cada acción se esté usando una fracción determinada del tiempo.

Representamos una estrategia mixta (o pura) del jugador reglón por una matriz con un solo renglón (vector probabilidad):

R = [a   b   c  . . . ]

Con lo mismo número de entradas que renglones, y en cual cada entrada representa la fracción de tiempo que está usada la correspondiente acción (o la probabilidad de usar aquel acción) y donde a + b + . . . = 1.

Una estrategia mixta para el jugador renglón se represente por un vector probabilidad similar, pero en forma de columna C. Para ambos jugadores, estrategias puras son representadas por vectores probabilidad con un solo 1 y el resto de las entradas 0.

VALOR ESPERADO

El valor esperado del juego con matriz de pagos P que resulta por las estrategias mixtas R y C es dado por

e = RPC

El valor esperado del juego es el pago promedio por turno si cada jugador usa su estrategia mixta especificada por R y C después de un gran número de turnos.


CRITERIO MINIMAX, PRINCIPIOS FUNDAMENTALES DE LA TEORÍA DE JUEGOS

CRITERIO MINIMAX 

Un jugador quien usa el criterio minimax escoge una estrategia que, entre todas las estrategias posibles, minimiza el daño de la mejor contra-estrategia del otro jugador. Es decir, una estrategia óptima según el criterio minimax es una que minimiza el daño máximo que puede hacer el contrincante.

Encontrar la estrategia se llama solucionar el juego. La tercera parte del tutorial para esta tema muestra un método gráficamente para solucionar juegos 2×2. Para juegos generales, se puede usar el método simplex. Sin embargo, se puede frecuentemente simplificar un juego y a veces solucionarlo por "reducir por predominio" y/o comprobar si es "estrictamente determinado" (vea más abajo).


PRINCIPIOS FUNDAMENTALES DE LA TEORÍA DE JUEGOS

Cuando analizamos cualquier juego, hacemos los siguientes supuestos acerca de los dos jugadores:

  1. Cada jugador hace la acción mejor posible.
  2. Cada jugador sabe que su contrincante está también haciendo la acción mejor posible.

PUNTO DE SILLA, JUEGO ESTRICTAMENTE DETERMINADO

Un punto de silla es un pago que es simultáneamente un mínimo de su renglón y un máximo de su columna. Para encontrar puntos de silla, Encierre en círculo los mínimos de todos los renglones y meta en caja las máximas de todas las columnas. Los puntos de silla son aquellas entradas que son simultáneamente en círculo y en caja.

Un juego es estrictamente determinado si tiene por lo menos uno punto de silla. Las siguientes declaraciones se aplican a los juegos estrictamente determinados:

  1. Todos los puntos de silla en un juego tienen los mismos valores de pago.
  2. Elegir el renglón y la columna que pasan por cualquier punto de silla de estrategias minimax para ambos jugadores. Es decir, el juego es solucionado por el uso de estas estrategias puras.
El valor de un juego estrictamente determinado es el valor del punto de silla. Un juego justo tiene un valor igual a cero, si no, es injusto o parcial.


ESTRATEGIA ALEATORIA

Es aquella en donde el jugador renglón elige un renglón al azar, de acuerdo con cierta distribución de probabilidad. Por ejemplo, el jugador renglón podría la siguiente distribución de probabilidad:

RESULTADO
PROBABILIDAD
Renglón1
2/3
Renglón 2
1/3

Si el jugador renglón utiliza esta distribución de forma predecible, como cuando selecciona repetidamente el renglón 1 dos veces y luego el renglón 2 una vez, el jugador columna podría descubrir la estrategia de responder con el fin de reducir al mínimo su eficacia. Por lo tanto, el jugador renglón debe emplear algún dispositivo aleatorio, como la rueda giratoria que se mostro anteriormente (ruleta de pueblo), con el cual elegiría 1  dos terceras partes del tiempo.

Los juegos de punta de silla están estrictamente determinados; es decir, los jugadores adoptan estrategias puras, y el curso del juego se determina por adelantado (suponiendo que los jugadores son agresivos y capaces). Los juegos sin punto de silla no están estrictamente determinados; si un jugador emplea una estrategia aleatoria, el curso del juego estará sujeto al azar, y todo puede suceder. No hay valor fijo para el juego; solo hay un valor muy probable o esperado.


JUEGOS NO ESTRICTAMENTE DETERMINADOS

Esta clase de juegos tiene más de una alternativa de juego por la que los jugadores podrían ganar, por lo que no están obligados a siempre jugar con la misma estrategia, no presentan un punto silla por que el número menor de todos los máximos de las columnas no es igual al número mayor de los menores de los renglones, dando como resultado un juego no estrictamente determinado.


EJEMPLO:


Formulación de juegos de dos personas con suma cero

Para ilustrar las características básicas de un modelo de teoría de juegos, considérese el juego llamado pares y nones. Éste consiste nada más en que los dos jugadores muestran al mismo tiempo uno o dos dedos. Si el número de dedos coincide, el jugador que apuesta a pares (por ejemplo, el jugador 1) gana la apuesta (digamos $l) al jugador que va por nones (jugador II). Si el número no coincide, el jugador 1 paga $l al jugador II.

Entonces, cada jugador tiene dos estrategias: mostrar uno o dos dedos. 

En general, un juego de dos personas se caracteriza por:


1. Las estrategias del jugador I.
2. Las estrategias del jugador II.
3. La matriz de pagos.

Antes de iniciar el juego, cada jugador conoce las estrategias de que dispone, las que tiene su oponente y la matriz de pagos. Una jugada real en el juego consiste en que los dos jugadores elijan al mismo tiempo una estrategia sin saber cuál es la elección de su oponente.

Una estrategia puede constituir una acción sencilla, como mostrar un número par o non de dedos en el juego de pares y nones. Por otro lado, en juegos más complicados que llevan en sí una serie de movimientos, una estrategia es una regla predeterminada que especifica por completo cómo se intenta responder a cada circunstancia posible en cada etapa del juego. Por ejemplo, una estrategia de un jugador de ajedrez indica cómo hacer el siguiente movimiento para todas las posiciones posibles en el tablero, de manera que el número total de estrategias posibles sería astronómico. Las aplicaciones de la teoría de juegos involucran situaciones competitivas mucho menos complicadas que el ajedrez pero las estrategias que se manejan pueden llegar a ser bastante complejas.

Por lo general, la matriz de pagos muestra la ganancia (positiva o negativa) que resultaría con cada combinación de estrategias para el jugador 1. Se da de esta manera, ya que la matriz del jugador II es el negativo de ésta, debido a la naturaleza de la suma cero del juego.

Los elementos de la matriz pueden tener cualquier tipo de unidades, como dólares, siempre que representen con exactitud la utilidad del jugador 1 en el resultado correspondiente. Debe hacerse hincapié en que la utilidad no necesariamente es proporcional a la cantidad de dinero (o cualquier otro bien) cuando se manejan cantidades grandes. Por ejemplo, para una persona pobre $2 millones (después de impuestos) tal vez vale mucho más que el doble de $1 millón. En otras palabras, si a una persona se le da a elegir entre: 1) recibir, con el 50% de posibilidades, $2 millones en lugar de nada y 2) recibir $1 millón con seguridad, ese individuo tal vez prefiriera este último. Por otro lado, el resultado que corresponde a un elemento 2 en una matriz de pagos debe "valer el doble" para el jugador 1 que el resultado correspondiente a un elemento 1. Así, dada la elección, debe serle indiferente un 50% de posibilidades de recibir el primer resultado (en lugar de nada) y recibir en definitiva el último resultado.

Un objetivo primordial de la teoría de juegos es establecer criterios racionales para seleccionar una estrategia, los cuales implican dos suposiciones importantes:

1. Ambos jugadores son racionales.
2. Ambos jugadores eligen sus estrategias sólo para promover su propio bienestar (sin compasión para el oponente).

La teoría de juegos se contrapone al análisis de decisión, en donde se hace la suposición de que el tomador de decisiones está jugando un juego contra un oponente pasivo, la naturaleza, que elige sus estrategias de alguna manera aleatoria.

Se desarrollará el criterio estándar de teoría de juegos para elegir las estrategias mediante ejemplos ilustrativos. En particular, a continuación se presenta un ejemplo prototipo que ilustra la formulación de un juego y su solución en algunas situaciones sencillas. Después se desarrollará una variación más complicada de este juego para obtener un criterio más general.

Para ampliación de la información, véase: